Мануал по моменту затяжки болтов

Момент затяжки – это усилие, которое прикладывается к резьбовому соединению при его завинчивании. Если закрутить крепеж с меньшим усилием, чем это необходимо, то, под воздействием вибраций, резьбовое соединение может раскрутиться, не обеспечивая нужную герметичность между скрепляемыми деталями, что может привести к тяжелым последствиям. Наоборот, если приложить к метизу большее усилие, чем требуется, произойдет разрушение резьбового соединения или скрепляемых деталей, например, может произойти срыв резьбы или появление трещин в деталях.

Для каждого размера и класса прочности резьбового соединения указаны определенные моменты затяжки. Все значения занесены в специальную таблицу усилий для затяжки динамометрическим ключом. Обычно, класс прочности болта указывается на его головке.

Классы прочности для метрических болтов

Класс прочности указывается цифрами на головке.

Классы прочности для дюймовых болтов

Информация о прочности выполнена в виде насечек на головке.

Резьбовые соединения затягивают стрелочным, предельным или цифровым динамометрическим ключом.

Таблица усилий затяжки метрических болтов

Усилие указано в Ньютон-метрах.

таблица усилий затяжки болтов динамометрическим ключом

Таблица усилий затяжки дюймовых болтов

SAE
класс болтов

1 или 2

5

6 или 7

8

Размер

Усилие

Усилие

Усилие

Усилие

(дюймы)-(резьба)
1/4 — 20
      — 28

Ft-Lb
5
6

Кг/м
0.6915
0.8298

Н/м
6.7791
8.1349

Ft-Lb
8
10

Кг/м
1.1064
1.3830

Н/м
10.8465
13.5582

Ft-Lb
10

Кг/м
1.3630

Н/м
13.5582

Ft-Lb
12
14

Кг/м
1.6596
1.9362

Н/м
16.2698
18.9815

 

5/16 — 18
      -24

11
13

1.5213
1.7979

14.9140
17.6256

17
19

2.3511
2.6277

23.0489
25.7605

19

2.6277

25.7605

24
27

3.3192
3.7341

32.5396
36.6071

 

3/8 — 16
      — 24

18
20

2.4894
2.7660

24.4047
27.1164

31
35

4.2873
4.8405

42.0304
47.4536

34

4.7022

46.0978

44
49

6.0852
6.7767

59.6560
66.4351

 

7/16 — 14
      — 20

28
30

3.8132
4.1490

37.9629
40.6745

49
55

6.7767
7.6065

66.4351
74.5700

55

7.6065

74.5700

70
78

9.6810
10.7874

94.9073
105.7538

 

1/2 — 13
      — 20

39
41

5.3937
5.6703

52.8769
55.5885

75
85

10.3785
11.7555

101.6863
115.2445

85

11.7555

115.2445

105
120

14.5215
16.5860

142.3609
162.6960

 

9/16 — 12
      — 18

51
55

7.0533
7.6065

69.1467
74.5700

110
120

15.2130
16.5960

149.1380
162.6960

120

16.5960

162.6960

155
170

21.4365
23.5110

210.1490
230.4860

 

5/8 — 11
      — 18

83
95

11.4789
13.1386

112.5329
128.8027

150
170

20.7450
23.5110

203.3700
230.4860

167

23.0961

226.4186

210
240

29.0430
33.1920

284.7180
325.3920

 

3/4 — 10
      — 16

105
115

14.5215
15.9045

142.3609
155.9170

270
295

37.3410
40.7985

366.0660
399.9610

280

38.7240

379.6240

375
420

51.8625
58.0860

508.4250
568.4360

 

7/8 — 9
      — 14

160
175

22.1280
24.2025

216.9280
237.2650

395
435

54.6285
60.1605

535.5410
589.7730

440

60.8520

596.5520

605
675

83.6715
93.3525

820.2590
915.1650

 

1 — 8
    — 14

236
250

32.5005
34.5750

318.6130
338.9500

590
660

81.5970
91.2780

799.9220
849.8280

660

91.2780

894.8280

910
990

125.8530
136.9170

1233.7780
1342.2420


Для закручивания резьбовых соединений в соответствии с данными таблиц необходимо использовать специальный инструмент — динамометрический ключ.

Ниже представлены популярные модели ключей, диапазоны которых перекрывают большинство значений определенных моментов затяжки. Максимальную точность передачи крутящего момента обеспечивают электронные динамометрические ключи.


Таблицы моментов затяжки колес

Примерные значения для легковых автомобилей

таблица затяжка динамометрическим ключом

Для легковых автомобилей используют ключи с присоединительным квадратом 1/2. Самыми популярными ключами являются модели с затяжкой до 200-210 Нм, например, ключи с диапазоном 28-210 или 42-210. Ниже представлены варианты подобных ключей.



Примерные значения для грузовых автомобилей и автобусов

усилия затяжки динамометрическим ключом для грузовых автомобилей

Для коммерческого транспорта используют ключи с присоединительным квадратом 1/2, 3/4 и даже 1 дюйм. Ниже представлены варианты ключей для автобусов, коммерческих и грузовых автомобилей.



Порядок затяжки

Компания AIST располагает широким ассортиментом профессиональных ключей для выполнения различных работ с резьбовыми соединениями. У нас всегда возможно подобрать необходимый динамометрический ключ для автомобиля, как для легкового, так и для грузового транспортного средства.

*Значения таблиц моментов затяжки носят информационный характер, без ссылки на какой-либо ГОСТ.

Полезные статьи:

  • Виды динамометрических ключей
  • Как пользоваться динамометрическим ключом
  • Как выбрать динамометрический ключ

Выход из строя резьбовых соединений при чрезмерной затяжке может произойти из-за разрушения стержня болта или из-за срыва резьбы гайки и/или болта.

Болт или винт в сборе с гайкой соответствующего класса предназначены для создания соединений, которые можно затянуть до установленного значения пробной нагрузки болта без срыва резьбы. Пробная нагрузка обычно составляет 85-95% от предела текучести и определяется как максимальное растягивающее усилие, которое можно приложить к болту и которое не приведет к его пластической деформации.

Значение крутящего момента для конкретного размера болта зависит от:

  1. Материала и класса прочности болта.
  2. Материала соединяемых деталей (сталь, цветной металл или пластик).
  3. Наличия или отсутствия антикоррозийного покрытия у винта.
  4. Является ли крепеж сухим или в смазке.
  5. Длины резьбы.

Таблицы ниже даны только для ознакомления, так как приведенные в них значения являются приблизительными. Из-за множества факторов, влияющих на соотношение крутящего момента и натяжения, единственный способ определить правильный крутящий момент — это провести эксперименты в реальных условиях соединения и сборки.

Таблица 1. Моменты затяжки – винт (болт) без покрытия (черный), коэффициент трения 0,14.

Крупная резьба

Диаметр резьбы Класс прочности
5.6
8.8

10.9

12.9
Nm ft lb. Nm ft lb. Nm ft lb. Nm ft lb.
М3 0.6 0.44 1.37 1.01 1.92 1.42 2.3 1.7
М4 1.37 1.01 3.1 2.29 4.4 3.05 5.25 3.87
М5 2.7 1.99 6.15 4.54 8.65 6.38 10.4 7.6
М6 4.6 3.3 10.5 7.7 15 11 18 13
М7 7.6 5.6 17.5 12.9 25 18.4 29 21.3
М8 11 8.1 26 19 36 26 43 31
М10 22 16 51 37 72 53 87 64
М12 39 28 89 65 125 92 150 110
М14 62 45 141 103 198 146 240 117
М16 95 70 215 158 305 224 365 269
М18 130 95 295 217 420 309 500 368
М20 184 135 420 309 590 435 710 523
М22 250 184 570 420 800 590 960 708
М24 315 232 725 534 1020 752 1220 899
М27 470 346 1070 789 1510 1113 1810 1334
М30 635 468 1450 1069 2050 1511 2450 1806
М33 865 637 1970 1452 2770 2042 3330 2455
М36 1111 819 2530 1865 3560 2625 4280 3156
М39 1440 1062 3290 2426 4620 3407 5550 7093

Мелкая резьба

Диаметр резьбы Класс прочности

8.8

10.9

12.9
Nm ft lb. Nm ft lb. Nm ft lb.
М8х1 27 19 38 28 45 33
М10х1,25 52 38 73 53 88 64
М12х1,25 95 70 135 99 160 118
М14х1,5 150 110 210 154 250 184
М16х1,5 225 165 315 232 380 280
М18х1,5 325 239 460 339 550 405
М20х1,5 460 339 640 472 770 567
М22х1,5 610 449 860 634 1050 774
М24х2 780 575 1100 811 1300 958

Таблица 2. Моменты затяжки –  винт электролитически оцинкованный, коэффициент трения 0,125.

Крупная резьба

Диаметр резьбы Класс прочности
5.6
8.8

10.9

12.9
Nm ft lb. Nm ft lb. Nm ft lb. Nm ft lb.
М3 0.56 0.41 1.28 0.94 1.8 1.33 2.15 1.59
М4 1.28 0.94 2.9 2.14 4.1 3.02 4.95 3.65
М5 2.5 1.84 5.75 4.24 8.1 5.97 9.7 7.15
М6 4.3 3.1 9.9 7.3 14 10.3 16.5 12.1
М7 7.7 5.2 16.5 12.1 23 16.9 27 19.9
М8 10.5 7.7 24 17.7 34 25 40 29
М10 21 15 48 35 67 49 81 59
М12 36 26 83 61 117 86.2 140 103
М14 58 42 132 97 185 136 220 162
М16 88 64 200 147 285 210 340 250
М18 121 89 275 202 390 287 470 346
М20 171 126 390 287 550 405 660 486
М22 230 169 530 390 745 549 890 656
М24 295 217 675 497 960 708 1140 840
М27 435 320 995 733 1400 1032 1680 1239
М30 590 435 1350 995 1900 1401 2280 1681
М33 800 590 1830 1349 2580 1902 3090 2278
М36 1030 759 2360 1740 3310 2441 3980 2935
М39 1340 988 3050 2249 4290 3163 5150 3798

Мелкая резьба

Диаметр резьбы Класс прочности

8.8

10.9

12.9
Nm ft lb. Nm ft lb. Nm ft lb.
М8х1 25 18 35 25 42 30
М10х1,25 49 36 68 50 82 60
М12х1,25 88 64 125 92 150 110
М14х1,5 140 103 195 143 235 173
М16х1,5 210 154 295 217 350 258
М18х1,5 305 224 425 313 510 376
М20х1,5 425 313 600 442 720 531
М22х1,5 570 420 800 590 960 708
М24х2 720 531 1000 737 1200 885

Почему важен момент затяжки болта?

Даже опытные мастера иногда затягивают болты с чрезмерным или недостаточным усилием. Честно говоря, значения крутящего момента редко можно найти в технической информации о продукте. А ведь именно недостаточная или чрезмерная затяжка болтового соединения является частой причиной выхода крепежа из строя. Оптимальный момент затяжки жизненно важен для обеспечения безопасного и надлежащего функционирования винта.

Затягивание болта - чертеж, схема

Что происходит при затягивании болта?

Прилагаемый к гайке крутящий момент, заставляет ее скользить вверх по наклонной плоскости резьбы. При этом уменьшается расстояние между опорными поверхностями болта и гайки. Этот размер представляет собой длину захвата болтового соединения.

При дальнейшей затяжке на болт действует  нагрузка на растяжение. Его материал, чаще всего сталь, сопротивляется этому этому растяжению и создает усилие зажима на скрепляемых компонентах. Точно так же материалы подложки сопротивляются сжатию, чтобы сбалансировать давление зажима. Создаваемое напряжение называется предварительным натягом крепежа.

Конструктивные соединения, относящиеся к категории ответственных, требуют затяжки до определенного крутящего момента для обеспечения правильного предварительного натяга.

  • Правильно затянутый болт немного растягивается, но не выходит за область своей упругой деформации. Находясь под постоянным напряжением, он сохраняет усилие затяжки и проявляет устойчивость к усталостному разрушению.
  • Чрезмерно затянутый болт растягивается за границы упругого удлинения, что приводит к его необратимой пластической деформации и последующему разрушению.
  • Недостаточно затянутый болт допускает незначительный зазор между соединяемыми заготовками, который будет увеличиваться после постоянной динамической нагрузки или других рабочих нагрузок. Зазор в соединении означает отсутствие предварительного натяжения, что неизбежно приведет к разрушению соединения.

Таким образом, момент затяжки — это оптимальный крутящий момент, приложенный к гайке, чтобы болт мог надежно удерживать нагрузку, не деформируясь и не ломаясь. Единица измерения в системе СИ: Н·м (Ньютон-метр).

Момент силы предварительной затяжки резьбового соединения является расчетным значением и составляет 75-80% от величины пробной нагрузки. Последняя же служит в качестве контрольного показателя, который винт должен выдержать в ходе испытаний. Если вы превысите значение пробной нагрузки при затягивании, вы рискуете вывести из строя крепежный элемент.

Еще одно преимущество предварительного натяга

При первом взгляде на болтовой узел создается впечатление, что резьбовой крепеж сам несет все нагрузки, действующие извне в процессе эксплуатации. Но это не так. Когда к предварительно нагруженному соединению, прикладывается внешняя нагрузка, болт воспринимает неполное ее действие, а обычно только небольшую ее часть. Когда же рабочая нагрузка прикладывается к крепежному узлу, который не был предварительно нагружен, вся величина нагрузки ложится только на болт, что повышает вероятность его отказа.

Но это правило работает только в том случае, когда дополнительные внешние нагрузки не превышают предварительную нагрузку болтов, в противном случае нагрузка на резьбовой крепеж возрастает.

Роль сил трения и смазки в соединении

Для определения затягивающего усилия используются несколько специальных методов расчета, учитывающих не только класс прочности и диаметр резьбы винта, но и влияние гальванических покрытий, специальных смазочных материалов или эффект твердых и гладких сопрягаемых поверхностей и т. д.

Следует иметь в виду, что табличные данные являются грубым расчетом, не учитывающим сколько в реальных условиях сборки будет потеряно крутящего момента из-за трения.

При сухой сборке и грубых поверхностях приблизительно 90% приложенного крутящего момента приходится на преодоление сил трения: 50% на опорную поверхность гайки и 40 % между сопрягаемыми витками резьбы. Таким образом, для создания напряжения используется всего порядка 10% усилия затяжки.

Сила трения от смазки в болтовом соединении - диаграмма, схема

Но выход найден! — Уменьшить трение за счет смазки. При смазанной резьбе потребуется на 15-25% меньший крутящий момент для достижения того же напряжения, кроме того, это снизит вероятность поломки крепежного изделия во время установки и продлит срок его службы. Производители смазочных материалов обычно указывают значение коэффициента трения крепежа, который обеспечивает смазка.

Также можно использовать болты с заданным коэффициентом трения, например, с цинковым покрытием, которое снижает сопротивление при завинчивании.

Инструмент для установки с регулируемым моментом затяжки

Приложение точного момента затяжки к крепежным деталям достигается с помощью динамометрического ключа. При затягивании он показывает прилагаемое усилие в аналоговом или цифровом формате. Однако все динамометрические инструменты имеют определенную погрешность, которую необходимо учитывать для определения подходящего момента затяжки. 

Как правило, о точности динамометрического ключа можно узнать у производителя или продавца. 

Заключение

Хотя предварительная нагрузка является главным приоритетом в болтовом соединении, существует множество внешних факторов, влияющих на возможность достижения или сохранения усилия затяжки, таких как рабочие температуры, коррозионные среды, нагрузки на сдвиг, вибрация. Поэтому для обеспечения длительной гарантии надежности разъемного сопряжения важно контролировать и поддерживать предварительный натяг на уровне в процессе эксплуатации и при ремонтных работах.

Полезные советы

Поставить оценку

Нажмите, чтобы поставить
оценку

Хотел написать только момент для динамометрического ключа, но без объяснения обозначения прочности болтов не получится. Тогда начну с прочности:
На крепеже указывают класс прочности — два числа разделённых точкой: 3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9. Первое число обозначает предел прочности материала на разрыв, выраженный в тоннах на квадратный сантиметр сечения. На пример диаметр сечения резьбы болта М10 — 8.5мм (наружный диаметр резьбы 10мм вычитаем из него глубину резьбы 1.5мм, глубина резьбы соответствует шагу резьбы — теоретически), соответственно площадь 0.5675 см2,

S-площадь круга, π ≈ 3.14, r-радиус, D-диаметр

при маркировке 12.9 прочность на разрыв 0.5675*12=6.81 тонн. Цифра после точки это соотношение предела текучести к пределу прочности, выраженное в десятых долях, это соответствует максимальной рабочей нагрузке. Рекомендуемая нагрузка составляет 0.6-0.7 от предела текучести. Считаем дальше: (болт М10-12.9) предел текучести 6.81*0.9=6.129 т., а рекомендованная рабочая нагрузка не должна превышать 6.129*0.7=4.2903 т. То есть на этот болт можно повесить груз весом не более 4290кг. ;)))
Переходим к моменту затяжки резьбовых соединений: Есть универсальный метод для креплений общего назначения определяется по размеру ключа:

Момент затяжки в зависимости от класса прочности крепежа:

1кгс.м приблизительно равен 10Н.м. Точнее: 1 килограмм-сила-метр [кгс·м] = 9,80664999999931 ньютон-метр [Н·м], то есть для перевода КГс -> Нм надо КГс*9.814, для перевода Нм -> КГс надо Нм*0.1019 (исправлено, спасибо — serega-kadei)
При отсутствии динамометрического ключа, можно воспользоваться безменом, безмен закрепляем на конце ключа и тянем его строго перпендикулярно! Но для определения точного момента нам нужна следующая формула: А/В=С, где А-требуемый момент затяжки, В-длинна от центра резьбы до центра крепления безмена в метрах, С-показания безмена при котором будет обеспечен требуемый момент.

Плечо R это B из формулы, сила F это С из формулы.

Считаем для болта М10х1.5 12.9 7.9кгс.м, длина ключа от центра резьбы до крепления безмена 22см: 7.9/0.22=35.9(кг)-показания безмена.
Для примера фото от MadCat-OdessaUA

Это основные параметры при затяжке резьбовых соединений.
Отраслевой стандарт можно прочитать по ссылке — gostrf.com/normadata/1/4293834/4293834701.pdf
ОСТ 37.001.031-72 — www.gostrf.com/normativ/1/4293834/4293834703.htm
Скрин из ОСТ

Для справки про основной-крупный шаг резьб:
М6*(шаг) 1(мм), и далее по порядку
М8*1.25,
М10*1.5,
М12*1.75,
М14*2,
М16*2,
М18*2.5,
М20*2.5,
М22*2.5,
М24*3

Сейчас появилось очень много крепежа под «звезду» — Torx
T1: 2-3 Ncm
T2: 7-9 Ncm
T3: 14-18 Ncm
T4: 22-28 Ncm
T5: 43-51 Ncm
T6: 75-90 Ncm
T7: 1.4-1.7 Nm
T8: 2.2-2.6 Nm
T9: 2.8-3.4 Nm
T10: 3.7-4.5 Nm
T15: 6.4-7.7 Nm
T20: 10.5-12.7 Nm
T25: 15.9-19 Nm
T27: 22.5-26.9 Nm
T30: 31.1-37.4 Nm
T40: 54.1-65.1 Nm
T45: 86-103.2 Nm
T50: 132-158 Nm
T55: 218-256 Nm
T60: 379-445 Nm
T70: 630-700 Nm
T80: 943-1048 Nm
T90: 1334-1483 Nm
T100: 1843-2048 Nm

Сейчас почти у всех есть смартфоны и для них есть много программ где есть таблицы с рекомендуемыми значениями. На пример я использую программу MechTab в ней много нужных мне табличных данных, но если нужна только таблица по моменту затяжки лучше поискать другие программы.

Всем удачи!
Запись редактирую и дополняю.

Для тех кто не понимает резьбобразования: пара скринов из Mech Tab с размерами резьбы М 10х1.5

Маркировка – что указано на головках болтов.

Для изделий из углеродистой стали класса прочности — 2 на головке болта указаны цифры через точку. Пример: 3.6, 4.6, 8.8, 10.9, и др.

Первая цифра обозначает 1/100 номинальной величины предела прочности на разрыв, измеренную в МПа. Например, если на головке болта стоит маркировка 10.9 первое число 10 обозначает 10 х 100 = 1000 МПа.

Вторая цифра — отношение предела текучести к пределу прочности, умноженному на 10. В указанном выше примере 9 — предел текучести / 10 х 10. Отсюда Предел текучести = 9 х 10 х 10 = 900 МПа.

Предел текучести это максимальная рабочая нагрузка болта!

Для изделий из нержавеющей стали наносится маркировка стали — А2 или А4 — и предел прочности — 50, 60, 70, 80, например: А2-50, А4-80.

Число в этой маркировке означает — 1/10 соответствия пределу прочности углеродистой стали.

Перевод единиц измерения: 1 Па = 1Н/м2; 1 МПа = 1 Н/мм2 = 10 кгс/см2.
Предельные моменты затяжки для болтов (гаек).

Крутыщие моменты для затяжки болтов (гаек).

В таблице ниже приводятся закручивающие моменты для затяжки болтов и гаек. Не превышайте эти величины.

Резьба

Прочность болта

8.8

10.9

12.9

М6

10 Нм

13 Нм

16 Нм

М8

25 Нм

33 Нм

40 Нм

М10

50 Нм

66 Нм

80 Нм

М12

85 Нм

110 Нм

140 Нм

М14

130 Нм

180 Нм

210 Нм

М16

200 Нм

280 Нм

330 Нм

М18

280 Нм

380 Нм

460 Нм

М20

400 Нм

540 Нм

650 Нм

М22

530 Нм

740 Нм

880 Нм

М24

670 Нм

940 Нм

1130 Нм

М27

1000 Нм

1400 Нм

1650 Нм

М30

1330 Нм

1800 Нм

2200 Нм

М33

1780 Нм

2450 Нм

3000 Нм

М36

2300 Нм

3200 Нм

3850 Нм

М39

3000 Нм

4200 Нм

5050 Нм

М42

3700 Нм

5200 Нм

6250 Нм

Выше перечисленные величины даются для стандартных болтов и гаек, имеющих
метрическую резьбу. Для нестандартного и специального крепежа смотрите руководство по ремонту ремонтируемой техники.

Моменты затяжки стандартного крепежа с дюймовой резьбой стандарта США.

В следующих таблицах приведены общие нормативы
моментов затяжки для болтов и гаек SAE класса 5 и выше.

Размер

резьбы,

дюймы

Момент затяжки стандартных

болтов и гаек

Н м’

фунт фут

1/4

12± 3

9±2

5/16

3/8

25 ± 6

47± 9

18± 4,5

35 ± 7

7/16

70± 15

50± 11

1/2

105± 20

75±15

9/16

160 ± 30

120± 20

5/8

215± 40

160 ± 30

3/4

370 ± 50

275 ± 37

7/8

620± 80

460 ± 60

1

900 ± 100

660 ± +75

11/8

1300 ± 150

950 ± 100

1 1/4

1800 ±200

1325 ±150

1 3/8

2400 ± 300

1800 ± 225

1 1/2

3100 ± 350

2300 ± 250

1 ньютон-метр (Н.м) равен примерно 0,1 кГм.

ISO — Международная организация стандартов

Моменты затяжки стандартных ленточных хомутов с червячным зажимом для шлангов

В приводимой ниже таблице даются моменты затяжки
хомутов при их начальной установке на новом шланге, а
также при повторной установке или подтягивании хомутов
на шлангах, бывших в употреблении,

Момент затяжки для новых шлангов при начальной установке

Ширина хомута

Нм

фунт дюйм

16 мм
(

0,625 дюйма)

7,5 ± 0,5

65± 5

13,5 мм
(

0,531 дюйма)

4,5 ± 0,5

40± 5

8 мм
(

0,312 дюйма)

0,9 ± 0,2

8 ± 2

Момент затяжки для повторной сборки и подтягивания

Ширина хомута

Нм

фунт дюйм

16 мм
(

0,625 дюйма)

4,5 ± 0,5

40± 5

13,5 мм
(

0,531 дюйма)

3,0 ± 0,5

25± 5

8 мм
(

0,312 дюйма)

0,7 ± 0,2

6 ± 2

Таблица моментов затяжки типовых резьбовых соединений

Номинальный диаметр болта (мм)

Шаг резьбы (мм)

Момент затяжки Нм (кг.см, фунт.фут)

Метка на головке болта «4»

Метка на головке болта «7»

M5

0,8

3 ~ 4 (30 ~ 40; 2,2 ~ 2,9)

5 ~ 6 (50 ~ 60; 3,6 ~ 4,3)

M6

1,0

5 ~ 6 (50 ~ 50; 3,6 ~ 4,3)

9 ~ 11 (90 ~ 110; 6,5 ~ 8,0)

M8

1,25

12 ~ 15 (120 ~ 150; 9 ~ 11)

20 ~ 25 (200 ~ 250; 14,5 ~ 18,0 )

M10

1,25

25 ~ 30 (250 ~ 300; 18 ~ 22)

30 ~ 50 (300 ~ 500; 22 ~ 36)

M12

1,25

35 ~ 45 (350 ~ 450; 25 ~ 33)

60 ~ 80 (600 ~ 800; 43 ~ 58)

M14

1,5

75 ~ 85 (750 ~ 850; 54 ~ 61)

120 ~ 140 (1,200 ~ 1,400; 85 ~ 100)

M16

1,5

110 ~ 130 (1,100 ~ 1,300; 80 ~ 94)

180 ~ 210 (1,800 ~ 2,100; 130 ~ 150)

M18

1,5

160 ~ 180 (1,600 ~ 1,800; 116 ~ 130)

260 ~ 300 (2,600 ~ 3,000; 190 ~ 215)

M20

1,5

220 ~ 250 (2,200 ~ 2,500; 160 ~ 180)

360 ~ 420 (3,600 ~ 4,200; 260 ~ 300)

M22

1,5

290 ~ 330 (2,900 ~ 3,300; 210 ~ 240)

480 ~ 550 (4,800 ~ 5,500; 350 ~ 400)

M24

1,5

360 ~ 420 (3,600 ~ 4,200; 260 ~ 300)

610 ~ 700 (6,100 ~ 7,000; 440 ~ 505)

В повседневной жизни множество людей и компаний использует крепеж. Чтобы эффективно использовать крепеж, необходимо знать его технические характеристики, в особенности степень затяжки.

Что такое момент затяжки резьбовых соединений?

Определение степени затяжки резьбовых элементов проводится с целью повышения прочности соединения, увеличения срока службы и повышения сопротивляемости соединения различным негативным факторам. Для каждого крепежного элемента есть оптимальная степень затяжки резьбовых элементов на посадочном месте, которая рассчитывается на основе приложенных нагрузок, температурных режимов и свойств материалов.

болты и классы прочности

Момент затяжки – это усилие, прилагаемое к крепежному элементу при его закручивании в резьбовое соединение. Если мы будем закручивать крепеж с меньшим усилием, чем это необходимо, то, под воздействием внешних факторов (например, вибраций), резьбовое соединение может раскрутиться, не обеспечив необходимую герметичность между скрепляемыми деталями. И наоборот, если “перекрутить” крепежный элемент больше, чем это необходимо, может произойти разрушение самого крепежного элемента или скрепляемых деталей. Например, могут появиться сколы, трещины в деталях или сорваться резьба на крепежном элементе.

Для любого размера и класса прочности крепежного элемента определены наилучшие моменты затяжки. Данные значения занесены в специальную таблицу усилий затяжки метрических болтов динамометрическим ключом. Обозначение класса прочности болта обычно указывается на головке болта.

Определение момента затяжки

Рассмотрим порядок определения момента затяжки с помощью динамометрического ключа.

Динамометрический ключ можно разделить на несколько видов.

Стрелочный ключ

стрелочный ключ

Самый простой в использовании вид ключа. Принцип его работы основан на отклонении рычага со шкалой относительно неподвижного указателя. Ручка торсион используется для передачи усилия на крепежное изделие. Стрелка указатель с одной стороны прикреплена к головке ключа, а с другой стороны свободна и служит указателем, который показывает значение крутящего момента в определённый момент времени.

Из плюсов можно выделить:

  • низкую стоимость изделия;
  • шкала работает в обе стороны. Она позволяет закручивать крепежные изделия как с правой, так и с левой резьбой.

Из недостатков можно выделить:

  • низкую точность (погрешность измерений составлять от 4 до 10%);
  • данные ключи нельзя отрегулировать и, в связи с этим они со временем изнашиваются и теряют точность измерений, что делает их непригодным к использованию;
  • крайне сложно работать в труднодоступных местах, потому что необходимо всегда следить за затяжкой по стрелке указателю;
  • отсутствует храповый механизм, как у ключа трещотки, в связи с этим ключ приходится всегда переставлять заново;

Предельный ключ (белковый)

щелковый ключ

Конструкция данного динамометрического ключа показана на картинке. В данном ключе есть специальный механизм, который даёт установить на нём необходимый крутящий момент и передать его на закручиваемый элемент. Также у данного ключа есть храповый механизм, как у обычной ;трещотки. Необходимый момент затяжки можно выставить при помощи шкал, расположенных на корпусе изделия. Как только при закручивании необходимый момент затяжки будет достигнут, прозвучит щелчок и сработает фиксатор, который не позволит превысить выставленную силу момента. Предельный ключ очень удобен в работе, так как при его использовании необходимо просто закручивать соединение до щелчка. Данные ключи имеют большой диапазон крутящего момента (от 5 до 3000 Нм). Размеры присоединительных приводов от 1/4 дюйма до 1 дюйма.

Из плюсов можно выделить:

  • погрешность данного ключа составляет не более 4%;
  • достаточно прост в использовании, так как есть храповый механизм;
  • можно заранее выставить необходимый крутящий момент, при достижении которого ключ издаст характерный щелчок;
  • легко использовать в труднодоступных местах;
  • может работать с крепежными изделиями как с правой, так и с левой резьбой.

Из недостатков можно выделить:

  • необходимость калибровки данного ключи;
  • со временем храповый механизм может выйти из строя, но можно отдельно приобрести рем комплект для некоторых моделей ключа.

Цифровой

цифровой ключ

По сравнению с предыдущими моделями ключей, данный динамометрический ключ имеет множество возможностей. Специальный датчик ключа генерирует сигнал, который преобразуется в необходимую величину крутящего момента и выводится на экран электронного ключа. У данного ключа минимальная погрешность измерений, благодаря электронным компонентам. На дисплее выставляется необходимый момент закручивания, при достижении которого данный ключ издает звуковой сигнал. Во время работы на экране выводится значение крутящего момента в реальном времени.

цифровой ключ для усилия затяжки

Из плюсов можно выделить:

  • вывод значений крутящего момента в разных значениях силы;
  • имеет световую и звуковую индикацию;
  • высокая точность измерений (низкая погрешность);
  • может работать с крепежными изделиями как с правой, так и с левой резьбой;
  • не требует регулировки благодаря электронной начинке;
  • удобство работы за счет храпового механизма;
  • сохраняет измеряемые значения в память устройства.

Из недостатков можно выделить:

  • высокая стоимость по сравнению с ключами других видов.

Данный инструмент должен быть подобран таким образом, чтобы момент затяжки крепежного элемента был на 20−30% меньше, чем максимальный момент на используемом ключе. При попытке превысить предел, ключ быстро выйдет из строя. Усилие на затяжку и тип стали указывается на каждом болте.

Таблица усилий затяжки метрических болтов

Размер Класс прочности
N.m*
3.6 4.6 5.6 5.8 6.8 8.8 9.8 10.9 12.9
М1,6 0,05 0,07 0,09 0,11 0,14 0,18 0,21 0,26 0,31
М2 0,11 0,14 0,18 0,24 0,28 0,38 0,42 0,53 0,63
М2,5 0,22 0,29 0,36 0,48 0,58 0,78 0,87 1,09 1,31
М3 0,38 0,51 0,63 0,84 1,01 1,35 1,52 1,90 2,27
М4 0,71 0,95 1,19 1,59 1,91 2,54 2,86 3,57 4,29
М5 1,71 2,28 2,85 3,80 4,56 6,09 6,85 8,56 10,3
М6 2,94 3,92 4,91 6,54 7,85 10,5 11,8 14,7 17,7
М8 7,11 9,48 11,9 15,8 19,0 25,3 28,4 35,5 42,7
М10 14,3 19,1 23,8 31,8 38,1 50,8 57,2 71,5 85,8
М12 24,4 32,6 40,7 54,3 65,1 86,9 97,7 122 147
М14 39 52 65 86,6 104 139 156 195 234
М16 59,9 79,9 99,8 133 160 213 240 299 359
М18 82,5 110 138 183 220 293 330 413 495
М20 117 156 195 260 312 416 468 585 702
М22 158 211 264 352 422 563 634 792 950
М24 202 270 337 449 539 719 809 1011 1213
М27 298 398 497 663 795 1060 1193 1491 1789
М30 405 540 675 900 1080 1440 1620 2025 2430
М33 550 734 917 1223 1467 1956 2201 2751 3301
М36 708 944 1180 1573 1888 2517 2832 3540 4248
М39 919 1226 1532 2043 2452 3269 3678 4597 5517
М42 1139 1518 1898 2530 3036 4049 4555 5693 6832
М45 1425 1900 2375 3167 3800 5067 5701 7126 8551
М48 1716 2288 2860 3313 4576 6101 6864 8580 10296
М52 2210 2947 3684 4912 5895 7859 8842 11052 13263
М56 2737 3650 4562 6083 7300 9733 10950 13687 16425
М60 3404 4538 5673 7564 9076 12102 13614 17018 20422
М64 4100 5466 6833 9110 10932 14576 16398 20498 24597
М68 4963 6617 8271 11029 13234 17646 19851 24814 29777

*где N.m — крутящий момент. Равен произведению силы на плечо ее применения и измеряется в ньютон-метрах. Таким образом, если к гаечному ключу длиной 1 метр (плечо), приложить силу в 1 Ньютон (перпендикулярно на конце ключа), то мы получим крутящий момент равный 1 Нм.

Понравилась статья? Поделить с друзьями:

А вот и еще интересные новости по теме:

  • Арктур 006 характеристики инструкция по эксплуатации
  • Руководство по ремонту мерседес 609d
  • Препарат от давления триплексом инструкция по применению цена отзывы
  • Рав 4 мануал 2010
  • Nevoks испаритель инструкция по применению на русском

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии